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Short-time critical dynamics of the two-dimensional random-bond Ising model
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With Monte Carlo simulations we investigate the nonequilibrium critical dynamic behavior of the two-
dimensional random-bond Ising model. Based on the short-time dynamic scaling form, we estimate all the
static and dynamic exponents from dynamic processes starting with both disordered and ordered states. Cor-
rections to scaling are carefully considered.
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I. INTRODUCTION

Ferromagnetic systems with quenched randomness
been studied intensively in recent years. For such system
main subject is whether the quenched randomness cha
the universal class of the phase transition. In 1974 Harris
proposed a criterion@1#: if the critical exponenta is positive
for the pure system, the quenched randomness change
critical exponents, but ifa is negative, the universal class o
the disordered system remains the same. This criterion w
well for most systems. However, for the two-dimension
~2D! Ising model wherea50, one cannot draw a definit
conclusion. Theoretical analysis predicted that for the
Ising model the randomness could only induce a logarith
correction to the critical behavior, and all the critical exp
nents are not changed@2–5#. For example, in the critica
region the following behavior has been proposed for the c
relation length:

j;t2n@11C ln~1/t!#ñ, n51, ñ5
1

2
, ~1!

wheret5(T2Tc)/Tc is the reduced temperature.
Numerical studies of influence of quenched randomn

on the 2D Ising model have been carried out by Monte Ca
simulations and by transfer matrix calculations@6–16#.
Some of these numerical studies favor the theoretical pre
tion; i.e., the quenched randomness could only induce a lo
rithmic correction to the critical behavior@6–11#. However,
some other Monte Carlo studies of these models suppo
weak universality scenario: whileh and g/n remain the
same as those of the pure system, the exponentsn and g
change with the strength of randomness@14–16#. The key
point here is that in order to extract the critical expone
from the simulations in equilibrium, one has to apply t
finite size scaling analysis, and different schemes of such
analysis could favor different fittings when the data are
sufficiently accurate.

In the last several years, nonequilibrium critical dynam
has been developed essentially. After carefully taking i
account the effect of themacroscopicinitial states, a dy-
namic scaling form can be written that is already valid in t
macroscopicshort-timeregime@17–27#. The short-time dy-
namic scaling presents many new phenomena compared
1063-651X/2001/64~3!/036123~7!/$20.00 64 0361
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the long-time dynamic scaling. An interesting example is
so-called critical initial increase of the magnetization
@17,21–23#. It shows that the initial conditions can induc
rather anomalous behavior. More importantly, the static cr
cal exponents and the dynamic exponentz originally defined
in equilibrium or the long-time regime of the dynamic ev
lution, appear in the short-time dynamic scaling form. Th
fact might not look highly nontrivial but practically it lead
to new methods for the numerical measurements of all
static and dynamic critical exponents as well as the criti
temperature; for a review, see Ref.@24#. Since the measure
ments now are carried out in the short-time regime of
dynamic evolution, they do not suffer from critical slowin
down. Because of the small nonequilibrium spatial corre
tion length, it is also easy to overcome the finite size effe
Compared with those methods, e.g., the nonlocal cluster
gorithms, developed in equilibrium to overcome critic
slowing down, the dynamic approach does study the orig
local dynamics. Furthermore, it could apply to systems w
quenched randomness where the nonlocal cluster algorit
usually meet difficulties.

To observe the dynamic scaling in the macroscopic sh
time regime, we have to wait the timetmic that is sufficiently
long in the microscopic sense.tmic is the time the system
needs to sweep away the microscopic details. Of course,tmic
is not universal and essentially depends on the microsc
details. In Monte Carlo simulations with local algorithms, f
example, if a sweep over all the lattice sites is considere
be a typical microscopic time unit, and the interaction is on
nearest neighbor or next nearest neighbor,tmic should be
about 10–100 time steps. In most of the numerical simu
tions, this is indeed the case@24#. However, there are ex
amples that even after 100 time steps, the scaling behavi
still not so clean. In less severe cases, the deviation of
exponents is only about 1% or 2% from the expected val
@28,23,29#. Taking a somewhat largertmic or an inverse
power law correction, one can improve the results efficien
In more severe cases, the effective exponents can be
20 % different. In the last case, the difficulty will not b
easily removed by simply measuring in slightly later time
For the 2DXY model, for example, it is not clear whethe
the dynamic scaling is initial state dependent or not@30#.
Recently, it has been argued analytically that a logarithm
correction should be responsible for this deviation@31#, even
©2001 The American Physical Society23-1
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though the presented numerical data could not uniquely s
port it. It is believed that the vortex pairs are responsible
the logarithmic correction.

Large corrections to scaling in the short-time critical d
namics also appear in statistical systems with quenc
randomness—our data in this paper show this. The or
should be the many metastable states. When the system
from a disordered initial state, the relaxation to the equil
rium state at the critical temperature or nearby is affec
severely by these metastable states. This situation seem
be similar to that in the 2DXY model where vortex pairs
play an essential role. In the real world, systems w
quenched randomness are very important. Therefore, the
pose of this paper is to study systematically the short-t
critical dynamic behavior of systems with quenched rando
ness taking the 2D random-bond Ising model as an exam
Special attention is drawn to the possible corrections to s
ing. After excluding both dynamic and static corrections
scaling, accurate critical exponents will be obtained. It
interesting to see whether and how both static and dyna
exponents change along the critical line. Such a thoro
and systematic study is crucial for further application of t
short-time dynamics to disorder systems.

In the following section, we introduce the model an
short-time dynamic scaling. In Secs. III and IV, results of t
simulations from both the ordered and disordered ini
states are presented, respectively. Finally the conclusion
lows.

II. SHORT-TIME DYNAMIC SCALING

A. The model

In this paper, we report our systematic results of Mo
Carlo simulations for the short-time critical dynamic beha
ior of the 2D random-bond Ising model on a square latti
The Metropolis algorithm is used in simulations. A time un
is defined as a sweep over all spins on a lattice. The Ha
tonian of the model is

2H/kT5(̂
i j &

Ki j SiSj , ~2!

whereSi is the Ising spin and the sum is over the near
neighbors. The couplingsKi j are taken asK or rK randomly
with probability 1/2. The critical pointKc is given by the
self-dual relation@32#

sinh~2Kc!sinh~2rK c!51. ~3!

Simulations have been carried out for different strengths
randomness,r 50.5, r 50.25, andr 50.1 and for different
initial conditions. In all cases, dynamic scaling behavior
examined.

B. Short-time dynamic scaling

For dynamic behavior of critical systems, traditionally
is believed that universal scaling exists only in the long-ti
regime of the time evolution. However, in recent years it h
been discovered that starting from somemacroscopicinitial
03612
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states, universal scaling behavior emerges already in
macroscopic short-time regime of the dynamic process@17–
19,21,22,24#, after a microscopic time scaletmic . A typical
example is a magnetic system initially in a high temperat
state with a small initial magnetization m0, suddenly
quenched to the critical temperatureTc or nearby~without
external magnetic field! and then released to a dynamic ev
lution of model A @33,34#. A generalized dynamic scaling
form can be written down, for example, for thekth moment
of the magnetization,

M (k)~ t,t,L,m0!5b2kb/nM (k)~b2zt,b1/nt,b21L,bx0m0!.
~4!

Heret is the time variable,t is the reduced temperature,L is
the lattice size,b andn are standard static exponents, andz
is the dynamic exponent. Important is that a new indep
dent exponentx0 is introduced to describe the scaling beha
ior of the initial magnetizationm0. If the scaling form above
is valid, in principle all relevant exponents can be extrac
from the short-time behavior of suitable observables.

From Eq.~4!, neglecting the finite size effect and notin
that m0 is small, it is easy to derive that at the the initi
stage of the time evolution, the magnetization at the criti
temperature presents a universal power law behavior,

M ~ t,m0!;m0tu, u5~x02b/n!/z. ~5!

Numerical results and analytical calculations have revea
that the exponentu is positive for most systems, i.e., th
magnetization undergoesan initial increase. The physical
mechanism for this increase has not been clear. At least
mean-field effect or symmetry breaking is not very releva

Taking into account that the nonequilibrium spatial cor
lation length (;t1/z) is small at the initial stage of the tim
evolution, the second moment of the magnetization atTc
subjects to a finite size scaling

M (2)~ t,L !;L2dty, y5~22h!/z. ~6!

For simplicity, here we have assumedm050.
Another interesting observable is the autocorrelation

A~ t ![
1

Ld K (i
Si~0!Si~ t !L . ~7!

At the critical temperatureTc andm050, A(t) decays by a
power law@35#

A~ t !;t2l, l5
d

z
2u. ~8!

What is interesting here is that even though we have
m050, the exponentu ~i.e., x0) still enters the autocorrela
tion. This is becausex0 is actually the scaling dimension o
the local magnetization. For details of the above scali
analysis and a more systematic extension, readers are
ferred to Refs.@17,35# and the review paper Ref.@24#.
3-2
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On the other hand, starting from an ordered initial sta
dynamic scaling behavior of the system can be described
the scaling form

M (k)~ t,t,L !5b2kb/nM (k)~b2zt,b1/nt,b21L !. ~9!

This scaling form looks the same as that in the long-ti
regime but it is now assumed to hold already in the mac
scopic short-time regime. Many numerical simulations sh
that if we are only interested in determining the static ex
nents and the dynamic exponentz, this dynamic process is
more favorable, since the statistical fluctuation is less sev

At the critical temperature and for sufficiently large la
tices the magnetizationM decays by a power law

M ~ t !;t2b/nz. ~10!

In order to obtain the critical exponent 1/n, we assume thatt
is slightly different from zero. Then the power law behavi
of M (t) is modified by a scaling function, i.e.,M (t,t)
5t2b/nzG(t1/nzt). Differentiation of this equation leads to

]t ln M ~ t,t!ut505t1/nz]t8 ln G~t8!ut850 . ~11!

Finally, to determine the dynamic exponentz indepen-
dently, we introduce a time-dependent Binder cumul
U(t,L)5M (2)(t,L)/M2(t,L)21. From simple finite size
scaling analysis based on Eq.~9!, we can easily deduce th
power law behavior ofU(t,L) at Tc ,

U~ t,L !;td/z. ~12!

Since the critical temperature for the 2D random-bo
Ising model is exactly known, in this paper we will not di
cuss how to locate it. For details, readers are referred to
@24#.

III. RELAXATION FROM AN ORDERED INITIAL STATE

In this section, we present results of simulations start
from an ordered initial state. Statistical fluctuation in th
process is usually less severe than that from a disord
initial state. Furthermore, up to now, a strong correction
scaling has not been observed, in contrast to those proce
starting from disordered initial states in the cases ofXY sys-
tems or disordered systems. Therefore, this dynamic pro
is favorable for the determination of the static exponents
dynamic exponentz.

We have carried out simulations with the Metropolis
gorithm from an ordered initial state with the strength of t
randomnessr 50.5, 0.25, and 0.1, respectively. In order
obtain the derivative]t ln M(t,t)ut50, for eachr we have per-
formed simulations at three different temperatures in
critical region, K5Kc and K65Kc6DK. The derivative
]t ln M(t,t)ut50 can then be approximated as@M (t,K1)
2M (t,K2)#/M (t,Kc) with an error of the orderO(@DK#2).
In the simulations we mainly setDK50.005Kc . To confirm
that thisDK is small enough, we have also carried out ex
simulations withDK50.0025Kc for r 50.25. The lattice size
is L5128, and the system is updated up to 1000 Monte C
steps. An average is taken over 300 realizations of the c
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plings, and for each realization 100 samples. In order
make sure that the results are free of finite size effect,
have also performed a simulation onL5256 for r 50.25 at
Kc .

In Fig. 1, the time-dependent magnetization atKc and
K65(160.005)Kc for r 50.25 is plotted on a double log
scale. At the critical pointKc50.807 052, the magnetizatio
shows a nice power law behavior after a microscopic ti
scaletmic;100. The perfect overlap of the two curves f
L5128 andL5256 shows that there is already no finite si
effect forL5128. From the slope ofM (t) at Kc we estimate
the exponenth/2z50.0492(3) forL5128 and 0.0489(6)
for L5256. Within the errors, they are consistent. Forr
50.5 and r 50.1, the exponenth/2z is 0.0554(3) and
0.0397(3), respectively.

In Fig. 2, the time evolution ofU(t,L) for r 50.25 with
L5128 and L5256 is plotted on a log-log scale. Bot
curves show similar power law behavior aftertmic;100. The
slopes of the curves give the exponentd/z50.789(5) forL

FIG. 1. The time-dependent magnetization starting from orde
state at three differentK ’s in the critical region forr 50.25 plotted
in double-log scale.

FIG. 2. Binder cumulant forL5128 andL5256 plotted in log-
log scale forr 50.25.
3-3
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5128 and 0.791(8) forL5256. The agreement of these tw
values confirms again that the finite size effect is negligi
small. The exponentd/z for r 50.5 andr 50.1 are estimated
to be 0.879(9), and0.644(7), respectively. From these re
sults we obtain the dynamic exponentz52.28(2), 2.53(3),
and 3.11(3), respectively, forr 50.5, 0.25, and 0.1. It is
clear that the dynamic exponentz varies with the strength o
disorderr. Taking the dynamic exponentz as input we can
calculate the critical exponenth from h/2z measured from
M (t). For r 50.5, 0.25, and 0.1, the exponenth is estimated
to be 0.252(3), 0.249(3), and0.249(3), respectively. These
values are consistent with the theoretical value 0.25 of
pure Ising model. This universalh is also supported by al
recent numerical measurements in equilibrium.

In Fig. 1 we see that the magnetization curves upwa
aboveKc and downwards belowKc . With these data, the
derivative]t ln M(t) can be approximately calculated. In Fi
3, the time evolution of this derivative forr 50.25 calculated
with DK50.5%Kc and DK50.25%Kc is plotted on a
double-log scale~solid lines!. Both curves show similar
power law behavior. In a time interval@100,1000#, we mea-
sure from the slopes the critical exponent 1/nz50.368(2) for
DK50.5%Kc and 0.366(5) forDK50.25%Kc . The agree-
ment of these two values indicates thatDK50.5%Kc is
small enough to estimate the derivative]t ln M(t). For the

FIG. 3. The derivative]t ln M(t,t)ut50 atKc for r 50.25. The top
curve is estimated fromDK50.5% of Kc and the bottom from
DK50.25% of Kc . The power law fit within the time interva
@100,1000# is shown as the extended dotted line, while a fit to E
~17! on @10,1000# is denoted by circles.
03612
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other two values of the strength of disorderr 50.5 andr
50.1 we measure 1/nz50.422(3) and 0.284(3), respec-
tively.

With the exponentz and 1/nz in hand, we can calculate
the exponentn. For r 50.5, 0.25, and 0.1,n is 1.04(2),
1.07(2), and 1.13(2), respectively. These values ofn are
slightly bigger than 1, and show a small dependence on
strength of randomness. This is qualitatively consistent w
the results of Ref.@16#, where even bigger values ofn are
reported. In Table I, all the exponents are listed in comp
son with those forr 51 @24#. For r 51, n50.97(2) shows
that there is still a small systematic error or a correction
scaling in this measurement. Indeed, how to obtain very
curaten from short-time dynamics, e.g., to the accuracy
1%, remains open. But this systematic error makesn smaller
and would not explain biggern for smallerr. We will come
back to this point at the end of this section.

Here we would like to make some more comments.
estimate the exponentn, we have used the measured exp
nentsz and 1/nz as input. We are relatively confident of th
measurement ofz since the critical point is exactly known
and the scaling behavior ofU(t,L) is not affected by the
logarithmic correction in Eq.~5!. The reasonable results fo
the exponenth confirm this. However, the measurement
1/nz from the slope of]t ln M(t) could theoretically be af-
fected by the logarithmic correction as shown in Eq.~1!.

The power law behavior]t ln M(t,t)ut50;t1/nz is deduced
from the scaling formM (t,t)5b2b/nM (b2zt,b1/nt). If
there is a logarithmic correction forj(t), this scaling form
will be modified. Let us start from the following more gen
eral scaling form:

M ~ t,t!5b2b/nM „b2zt,t8~t,b!…, ~13!

wheret8(t,b) should be determined by the relationj(t8)
5b21j(t). According to Eq.~1!, we have

t82n@11C ln~1/t8!# ñ5b21t2n@11C ln~1/t!#ñ. ~14!

By writing t8 ast85tb1/n f (t,b), we get

f 5F12
C ln~b1/n f !

11C ln~1/t!G
ñ/n

'F12
C ln~b1/n!

11C ln~1/t!G
ñ/n

,

~15!

.

ponents
f

TABLE I. Results for the exponents from simulations starting from both random initial states and an ordered initial state. The ex
n andnc are obtained without and with the taking into account of the corrections to scaling in Eq.~17!, respectively. For the calculation o
z5(22h)/y, the theoretical valueh50.25 is used as input. Data forr 51 are taken from Ref.@24#.

Random start Ordered start
r u y l z5(22h)/y z5d/(l1u) z h n nc

1 0.191~1! 0.817~7! 0.737~1! 2.14~2! 2.155~3! 2.16~2! 0.249~2! 0.97~2! 0.99~3!

0.5 0.183~2! 0.76~1! 0.69~1! 2.30~3! 2.29~4! 2.28~2! 0.252~3! 1.04~2! 1.06~3!

0.25 0.161~2! 0.69~1! 0.62~1! 2.54~4! 2.56~4! 2.53~3! 0.249~3! 1.07~2! 1.09~4!

0.1 0.127~1! 0.56~1! 0.52~1! 3.12~5! 3.09~5! 3.11~3! 0.249~3! 1.13~2! 1.15~3!
3-4
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where the approximation is based on a very smallt. From
above equations, we obtain

]t ln M ~ t,t!;t1/nzF12
C ln~ t1/nz!

11C ln~1/t!G
ñ/n

. ~16!

For a finite t, there is a logarithmic correction that disa
pears at the exact critical temperaturet50.

However, Eq.~16! does not yield a good fit to the data
Fig. 3. Actually, according to Eq.~16! the correction to the
power law becomes prominent for larget but the curve in
Fig. 3 shows deviation from power law mainly in short
times. The deviation from a power law mainly in short
times is usually considered to be the effect of microsco
detail. It can be also described as a kind of correction
scaling. To investigate this correction to scaling, we ha
fitted our results in the time interval@10,1000# with the fol-
lowing ansatz:

]t ln M ~ t !5at1/nz~12bt2a!. ~17!

From Fig. 3 we see that the fit is rather good. The best-fitt
values ofa are 0.15, 0.20, and 0.22, respectively, for diffe
ent strengths of randomnessr 50.5, 0.25, and 0.1. The ex
ponent 1/nz is reduced about 2% and with a bigger error d
to this four-parameter fitting. This means that the correct
to the scaling could only increase our values of the expon
n. Actually, weare happy with this 2% correction since the
the exponentn for r 51 comes very close to 1, and it ex
plains the systematic error forn mentioned before, even
though statistical errors become bigger. In Table I, the val
for the exponentn after taking into account the corrections
scaling are given asnc . With these discussions we shou
state that our results favor the weak universality scen
with an r-dependent exponentn.

IV. QUENCHED FROM A HIGH TEMPERATURE STATE

For the dynamic process starting from a high tempera
state, our numerical data show that there are rather st
dynamic corrections to scaling, as in the 2DXY model
@30,31#. It is interesting that if we perform the measureme
in a time interval, e.g.,@100,2000#, all data result consis
tently in a roughly correcth, but the dynamic exponentz is
around 5 – 10 % bigger than that obtained from a dyna
process starting from an ordered initial state discussed in
last section. The corrections to scaling seem not to cha
the static exponents and the scaling relations between
exponents. It is very important to clarify these corrections
scaling and how they look like.

We start from the measurements of the exponentu. Here
we will not consider the corrections to scaling. It is not th
we are sure there are no corrections to scaling but it is
difficult to perform simulations to longer times. We nee
very small initial magnetizationm0 and large lattices. Fortu
nately, the value of the exponentu is relatively small and the
correction of it will not affect so much other exponents
our data analysis. As indicated in Eq.~5!, starting from a
high temperature state with a small initial magnetizationm0,
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the magnetization of the system undergoes an initial po
law increase, described by the exponentu. We have mea-
sured this exponent for different strengths of randomnesr
50.5, 0.25, and 0.1. In the simulations, initial configuratio
are prepared simply by setting the spin to be 1 or21 on
each lattice site randomly with the probability (11m0)/2
and (12m0)/2, respectively. After generating an initial con
figuration, the system is then updated with the Metropo
algorithm up to 200 Monte Carlo steps. The lattice size
L5128 and the initial magnetization ism050.02. For each
r, the average is over 300 realizations of the distribution
couplings, and for each realization the simulation is carr
out for 500 independent initial configurations.

In Fig. 4 the time evolutions of the magnetization f
different strengths of randomnessr at their critical tempera-
tures are plotted on double-log scale. The magnetization
deed increases. If we measure the slopes of the curves
time interval @10,200# the critical exponentu for r 50.5,
0.25, and 0.1 are 0.183(2), 0.161(2), and0.127(1), respec-
tively. The results are smaller than that of the 2D Ising mo
u50.191(3) @36# and are apparentlyr dependent.

The exponentu is actually defined in the limitm0→0. In
order to make sure that in our simulations the initial mag
tizationm0 is small enough, we have performed a simulati
with m050.01 for r 50.25. The measured value ofu is
0.162(4) and in good agreement withu50.161(2) with
m050.02. In our measurements, the errors induced by
finite initial magnetizationm0 can be ignored.

Now let us turn to dynamic evolution from a random in
tial state withm050. In this dynamic process, the autoco
relationA(t) and the second momentM (2)(t) are expected to
have power law behavior as described in Eqs.~8! and ~6!.

Some preliminary results show that in this evolution, t
dynamic scaling behavior of the autocorrelationA(t) and the
second momentM (2)(t) suffer from severe corrections t
scaling, which increase for smallerr. In order to investigate
clearly the corrections to scaling, we perform these simu

FIG. 4. Time evolution of the magnetization for differen
strengths of randomnessr at their critical temperatures plotted i
double-log scale. From top to bottom, ther is 0.5, 0.25, and 0.1,
respectively.
3-5
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H. J. LUO, L. SCHÜLKE, AND B. ZHENG PHYSICAL REVIEW E64 036123
tions up to 10 000 Monte Carlo steps. To avoid the finite s
effect the lattice sizes are set to beL5512, 512, and 256
respectively, for the three different strengths of randomn
r 50.5, 0.25, and 0.1. Such different choices are based on
fact that the dynamic exponentz increases for smallerr, and
for r 50.1 there is already no finite size effect withL5256
until 10 000 Monte Carlo steps. The averages are over
realizations of the distribution of couplings. For each reali
tion, the simulation is carried out with 10 and 50 independ
initial configurations forL5512 andL5256, respectively.

In Fig. 5, the time evolution of the autocorrelationA(t)
and the second momentM (2)(t) for r 50.1 atKc are plotted
as solid lines on double-log scale. Since the correction
scaling are severe, we perform a power law fit in a tim
interval @500,10 000#. The results are shown with dashe
lines. With these power law fits, the exponentsy5(2
2h)/z and l are measured to be 0.566(3) and 0.503(3),
respectively forr 50.1. To investigate the effect of the co
rection to scaling systematically, we fit the autocorrelat
A(t) in the time interval@10,10 000# with the following an-
satz:

A~ t !5at2l~12bt2c!, ~18!

and similarly fit the second momentM (2)(t) with

M (2)~ t !5aty~12bt2c!. ~19!

The best-fitting values ofc are about 0.2 and 0.4, respe
tively, for A(t) andM (2)(t). The resulting exponentsy5(2
2h)/z andl are 0.56(1) and 0.52(1). Compared with those
obtained from the power law fits starting fromtmic5500, a
different value forl shows that the correction to scaling
strong andtmic5500 cannot remove all its effect. We hav
also tried the ansatz with logarithmic corrections propo

FIG. 5. Time evolution of the autocorrelationA(t) and the sec-
ond momentM (2) for r 50.1 atKc plotted in double-log scale. The
extended dashed lines show the power law fits within the time
terval @500,10 000#, while the fits to Eqs.~18! and ~19! on
@10,10 000# are denoted by circles.
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for the 2DXY model in Ref.@31#. The fits seem also not bad
and the quality is similar to that for the fits with Eqs.~18!
and~19!, but the resulting exponents are not reasonable.
r 50.1, for example, we obtainy50.62(1) from the second
moment andl50.55(1) from the autocorrelation. These va
ues are too high compared toy50.56(1) andl50.52(1)
from the fits with Eqs.~18! and ~19!.

With the exponenty5(22h)/z in hand, we can estimate
the dynamic exponentz by using the theoretical valueh
50.25 as an input. The latter has been verified by the sim
lations from an ordered initial state. On the other hand,
can also calculate the dynamic exponentz from the relation
z5d/(l1u) by using the exponentsu and l as input. For
r 50.1, with l and y measured by fitting to Eqs.~18! and
~19!, we getz53.09(5) and 3.12(5). The twovalues agree
well with each other and are consistent withz53.11(3)
measured in the simulation starting from an ordered ini
state. Here we should mention that the correction ofu will
not change the estimate of the dynamic exponentz so much,
sinceu is much smaller thanl.

For the other two strengths of randomnessr 50.5 and
0.25, the exponenty5(22h)/z are measured to be 0.76(1
and 0.69(1), respectively, by fitting to Eq.~19!, while the
exponentl is 0.69(1) and 0.62(1) by fitting to Eq.~18!.

All the exponents calculated from our measurements
listed in Table I. The exponents of the pure Ising modelr
51) measured with short-time dynamic simulations are a
given in Table I for comparison~see the review paper@24#
and references therein!. We can see that the dynamic exp
nents calculated from the slope of the second momenz
5(22h)/y and from z5d/(l1u) are in good agreemen
with the value measured from ordered start for all differe
strengths of randomnessr.

To confirm the short-time dynamic scaling, we have a
measured the equal-time correlation functionC(x,t) in these
simulations. TheC(x,t) should be subject to the following
dynamic scaling:

C~x,t !5x2hg~x/t1/z!. ~20!

FIG. 6. The scaling functiong(x/t1/z)5xhC(x,t) for r 50.25.
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Based on this equation we can extract the exponentsz andh
independently from the correlation functionC(x,t) by
searching for the best scaling collapse.

As discussed above, the correction to scaling gets stro
for smallerr. Therefore, in performing the scaling collaps
we must set propertmic . In case of the second moment,tmic
should be about 500, 200, and 100 forr 50.1, 0.25, and 0.5
respectively. For the scaling collapse ofC(x,t), tmic can be
slightly smaller. For example, in Fig. 6 we present the sc
ing function g(x/t1/z)5xhC(x,t) for r 50.25. By searching
for the best scaling collapse in a time interval@80,10 000#,
we geth50.250(1) andz52.53(2). These results are ver
reasonable. Forr 50.5, we get h50.250(1) and z
52.28(1) with tmic540, and for r 50.1 we get h
50.250(2) andz53.11(1) withtmic5320. All these results
are in very good agreement with the former measureme
ko

ng

y

os

z

r

. B
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V. CONCLUSIONS

We have systematically investigated the short-time criti
dynamic behavior of the two-dimensional random-bo
Ising model with Monte Carlo methods. The simulations a
carried out for different strengths of randomness and for
ferent initial conditions. Scaling behavior has been examin
and corrections to scaling are seriously considered. The
ponentsu andz are found to be the strength of randomne
dependent. The exponenth is very consistent with the Ising
valueh50.25, but the exponentn is slightly bigger than 1
and is dependent on the strength of randomness.
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