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Short-time critical dynamics of the two-dimensional random-bond Ising model
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With Monte Carlo simulations we investigate the nonequilibrium critical dynamic behavior of the two-
dimensional random-bond Ising model. Based on the short-time dynamic scaling form, we estimate all the
static and dynamic exponents from dynamic processes starting with both disordered and ordered states. Cor-
rections to scaling are carefully considered.
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[. INTRODUCTION the long-time dynamic scaling. An interesting example is the
so-called critical initial increase of the magnetization
Ferromagnetic systems with quenched randomness hay&7,21-23. It shows that the initial conditions can induce
been studied intensively in recent years. For such systems,rather anomalous behavior. More importantly, the static criti-
main subject is whether the quenched randomness changesl exponents and the dynamic exponentiginally defined
the universal class of the phase transition. In 1974 Harris hagh equilibrium or the long-time regime of the dynamic evo-
proposed a criteriofil]: if the critical exponentx is positive  |ution, appear in the short-time dynamic scaling form. This
for the pure system, the quenched randomness changes tagt might not look highly nontrivial but practically it leads
critical exponents, but i& is negative, the universal class of to new methods for the numerical measurements of all the
the disordered system remains the same. This criterion workstatic and dynamic critical exponents as well as the critical
well for most systems. However, for the two-dimensionaltemperature; for a review, see RE24]. Since the measure-
(2D) Ising model wherex=0, one cannot draw a definite ments now are carried out in the short-time regime of the
conclusion. Theoretical analysis predicted that for the 2Ddynamic evolution, they do not suffer from critical slowing
Ising model the randomness could only induce a logarithmicdown. Because of the small nonequilibrium spatial correla-
correction to the critical behavior, and all the critical expo-tion length, it is also easy to overcome the finite size effect.
nents are not changg@®-5]. For example, in the critical Compared with those methods, e.g., the nonlocal cluster al-
region the following behavior has been proposed for the corgorithms, developed in equilibrium to overcome critical
relation length: slowing down, the dynamic approach does study the original
local dynamics. Furthermore, it could apply to systems with
quenched randomness where the nonlocal cluster algorithms
usually meet difficulties.
To observe the dynamic scaling in the macroscopic short-
wherer=(T—T,.)/T, is the reduced temperature. time regime, we have to wait the tintg;. that is sufficiently
Numerical studies of influence of quenched randomneskng in the microscopic senséy;. is the time the system
on the 2D Ising model have been carried out by Monte Carlmeeds to sweep away the microscopic details. Of cotyge,
simulations and by transfer matrix calculatiof§—16). is not universal and essentially depends on the microscopic
Some of these numerical studies favor the theoretical predidetails. In Monte Carlo simulations with local algorithms, for
tion; i.e., the quenched randomness could only induce a logaxample, if a sweep over all the lattice sites is considered to
rithmic correction to the critical behavi¢6—11. However, be a typical microscopic time unit, and the interaction is only
some other Monte Carlo studies of these models support mearest neighbor or next nearest neightigt, should be
weak universality scenario: whiley and y/v remain the about 10—-100 time steps. In most of the numerical simula-
same as those of the pure system, the exponerdad v  tions, this is indeed the cag@4]. However, there are ex-
change with the strength of randomn¢d4—-16. The key amples that even after 100 time steps, the scaling behavior is
point here is that in order to extract the critical exponentsstill not so clean. In less severe cases, the deviation of the
from the simulations in equilibrium, one has to apply theexponents is only about 1% or 2% from the expected values
finite size scaling analysis, and different schemes of such af28,23,29. Taking a somewhat larget,,;. or an inverse
analysis could favor different fittings when the data are nojpower law correction, one can improve the results efficiently.
sufficiently accurate. In more severe cases, the effective exponents can be 10—
In the last several years, nonequilibrium critical dynamics20 % different. In the last case, the difficulty will not be
has been developed essentially. After carefully taking inteeasily removed by simply measuring in slightly later times.
account the effect of thenacroscopicinitial states, a dy- For the 2DXY model, for example, it is not clear whether
namic scaling form can be written that is already valid in thethe dynamic scaling is initial state dependent or [&4].
macroscopicshort-timeregime[17—-27. The short-time dy- Recently, it has been argued analytically that a logarithmic
namic scaling presents many new phenomena compared witorrection should be responsible for this deviafidh], even

é~7[1+CIn(UNT, v=1, Zzg, (1)
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though the presented numerical data could not uniquely sugstates, universal scaling behavior emerges already in the
port it. It is believed that the vortex pairs are responsible fomacroscopic short-time regime of the dynamic pro¢éss-
the logarithmic correction. 19,21,22,24, after a microscopic time scatg,;.. A typical
Large corrections to scaling in the short-time critical dy- example is a magnetic system initially in a high temperature
namics also appear in statistical systems with quenchestate with a small initial magnetization my, suddenly
randomness—our data in this paper show this. The origimuenched to the critical temperattfg or nearby(without
should be the many metastable states. When the system stagtgernal magnetic fie)dand then released to a dynamic evo-
from a disordered initial state, the relaxation to the equilib-lution of model A [33,34]. A generalized dynamic scaling
rium state at the critical temperature or nearby is affectedorm can be written down, for example, for thkéh moment
severely by these metastable states. This situation seems dbthe magnetization,
be similar to that in the 2DXY model where vortex pairs
play an essential role. In the real world, systems with M®(t,7,L,mg)=b~**""M®(b~%,b"7,b™ L, b*my).
guenched randomness are very important. Therefore, the pur- 4
pose of this paper is to study systematically the short-time ) . , i )
critical dynamic behavior of systems with quenched randomti€ret is the time variabler is the reduced temperatuilejs
ness taking the 2D random-bond Ising model as an examplée lattice sizeg and » are standard static exponents, and
Special attention is drawn to the possible corrections to scal$ the dynamic exponent. Important is that a new indepen-
ing. After excluding both dynamic and static corrections todent éxponenx, is introduced to describe the scaling behav-
scaling, accurate critical exponents will be obtained. It isior of the initial magnetizatiom,. If the scaling form above
interesting to see whether and how both static and dynamil valid, in principle all relevant exponents can be extracted
exponents change along the critical line. Such a thorougfom the short-time behavior of suitable observables.

and systematic study is crucial for further application of the ~From Eq.(4), neglecting the finite size effect and noting
short-time dynamics to disorder systems. that mg is small, it is easy to derive that at the the initial

In the following section, we introduce the model and Stage of the time evolution, the magnetization at the critical
short-time dynamic scaling. In Secs. 1ll and 1V, results of thetemperature presents a universal power law behavior,
simulations from both the ordered and disordered initial

states are presented, respectively. Finally the conclusion fol- M(t,mg)~mgt?,  6=(xo—Blv)/z. )
lows.
Numerical results and analytical calculations have revealed
Il. SHORT-TIME DYNAMIC SCALING that the exponen® is positive for most systems, i.e., the
magnetization undergoesn initial increase The physical
A. The model mechanism for this increase has not been clear. At least the

In this paper, we report our systematic results of Montemean-fielq effect or symmetry breaking _is not very_relevant.
Carlo simulations for the short-time critical dynamic behav-  Taking into account that the nonequilibrium spatial corre-
ior of the 2D random-bond Ising model on a square latticelation length ¢t) is small at the initial stage of the time
The Metropolis algorithm is used in simulations. A time unit €volution, the second moment of the magnetizationT at
is defined as a sweep over all spins on a lattice. The Hamilsubjects to a finite size scaling

tonian of the model is
M@, L)~L"%,  y=(2-17)/z, (6)
—H/kT= K.:SS, 2 . .
(i2j> S @ For simplicity, here we have assumeg=0.

Another interesting observable is the autocorrelation
where §; is the Ising spin and the sum is over the nearest

neighbors. The couplings;; are taken a& or rK randomly 1
with probability 1/2. The critical poinK. is given by the A(t)E—d<z S(O)S(t)>- (7)
self-dual relatior{32] L%\ i

sinh(2K)sinh(2rK ;) = 1. (3 At the critical temperaturd, andmy=0, A(t) decays by a
_ _ _ _ Power law([35]
Simulations have been carried out for different strengths o

randomnesst =0.5, r=0.25, andr=0.1 and for different d
initial conditions. In all cases, dynamic scaling behavior are A(t)~t™, A= 7~ 6. (8)
examined.

What is interesting here is that even though we have set

my=0, the exponen?® (i.e., Xy) still enters the autocorrela-
For dynamic behavior of critical systems, traditionally it tion. This is becausg, is actually the scaling dimension of

is believed that universal scaling exists only in the long-timethe local magnetization. For details of the above scaling

regime of the time evolution. However, in recent years it hasanalysis and a more systematic extension, readers are re-

been discovered that starting from somacroscopidnitial ferred to Refs[17,35 and the review paper Ref24].

B. Short-time dynamic scaling
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On the other hand, starting from an ordered initial state, 1 .
dynamic scaling behavior of the system can be described b
the scaling form

MO(t,7,L)=b "M (b7t b 7,b7 ). (9) v
This scaling form looks the same as that in the long-time
regime but it is now assumed to hold already in the macro-
scopic short-time regime. Many numerical simulations show
that if we are only interested in determining the static expo- g-g;;ggg
nents and the dynamic exponentthis dynamic process is - 0.803000
more favorable, since the statistical fluctuation is less severe

At the critical temperature and for sufficiently large lat-

tices the magnetizatioll decays by a power law

M(t)Ntfﬁlvz. (10) 10 1(I)0 t 1000

In order to obtain the critical exponentlive assume that FIG. 1. The time-dependent magnetization starting from ordered
state at three differeri’s in the critical region forr =0.25 plotted

is slightly different from zero. Then the power law behavior double-l I
of M(t) is modified by a scaling function, i.eM(t,7) " “ouPie-0g scae.

=t~ Al":G(tY27). Differentiation of this equation leads to o
plings, and for each realization 100 samples. In order to

9. INM(t,7)|,—o=t"?9., InG(7")|, —¢. (11)  make sure that the results are free of finite size effect, we
have also performed a simulation ar=256 forr=0.25 at
Finally, to determine the dynamic exponentindepen- K.
dently, we introduce a time-dependent Binder cumulant |n Fig. 1, the time-dependent magnetizationkat and
U(t,L)=M®)(t,L)/M?(t,L)—1. From simple finite size K =(1+0.005K, for r=0.25 is plotted on a double log
scaling analysis based on E@), we can easily deduce the scale. At the critical poinK,=0.807 052, the magnetization
power law behavior obJ(t,L) at T, shows a nice power law behavior after a microscopic time
U(t,L)~td72 (12) scalet,,;.~100. The perfect overlap of the two curves for
' : L =128 andL =256 shows that there is already no finite size

Since the critical temperature for the 2D random-bongeffect forL =128. From the slope df (t) atK. we estimate
Ising model is exactly known, in this paper we will not dis- tN€ €xponenty/2z=0.0492(3) forL =128 and 0.0489(6)

cuss how to locate it. For details, readers are referred to Refof L=256. Within the errors, they are consistent. For
[24]. =0.5 andr=0.1, the exponentp/2z is 0.0554(3) and

0.03973), respectively.

In Fig. 2, the time evolution otJ(t,L) for r=0.25 with
L=128 andL=256 is plotted on a log-log scale. Both
In this section, we present results of simulations startingcurves show similar power law behavior aftgf.~100. The

from an ordered initial state. Statistical fluctuation in thisslopes of the curves give the exponeiz=0.789(5) forL
process is usually less severe than that from a disordered
initial state. Furthermore, up to now, a strong correction to .01 .
scaling has not been observed, in contrast to those process:
starting from disordered initial states in the caseX¥fsys-
tems or disordered systems. Therefore, this dynamic proces
is favorable for the determination of the static exponents anc
dynamic exponent.

We have carried out simulations with the Metropolis al-
gorithm from an ordered initial state with the strength of the
randomness = 0.5, 0.25, and 0.1, respectively. In order to
obtain the derivative . In M(t,7)|,—, for eachr we have per-
formed simulations at three different temperatures in the
critical region, K=K, and K.=K.*AK. The derivative
d,INM(t,7)|,—o can then be approximated g (t,K,)
—M(t,K_)]/M(t,K.) with an error of the orde®([AK]?). 00001 ¢
In the simulations we mainly setK =0.00%.. To confirm . .
that thisAK is small enough, we have also carried out extra 10 100 1000
simulations withAK =0.002% for r =0.25. The lattice size !
isL=128, and the system is updated up to 1000 Monte Carlo FIG. 2. Binder cumulant fot.= 128 andL = 256 plotted in log-
steps. An average is taken over 300 realizations of the coueg scale forr =0.25.

Ill. RELAXATION FROM AN ORDERED INITIAL STATE

ue)

0.001
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0.1 ' other two values of the strength of disorde+0.5 andr
=0.1 we measure ¥¢=0.422(3) and 0.288), respec-
tively.

With the exponent and 1kbz in hand, we can calculate
the exponentv. For r=0.5, 0.25, and 0.1y is 1.042),
1.072), and1.132), respectively. These values of are
slightly bigger than 1, and show a small dependence on the
strength of randomness. This is qualitatively consistent with
the results of Ref[16], where even bigger values of are
& InM reported. In Table I, all the exponents are listed in compari-
son with those for=1 [24]. Forr=1, v=0.97(2) shows
that there is still a small systematic error or a correction to
scaling in this measurement. Indeed, how to obtain very ac-
curatev from short-time dynamics, e.g., to the accuracy of
1%, remains open. But this systematic error makssnaller
and would not explain bigger for smallerr. We will come

AK = 05%K, _ oo™

0.01
AK = 0.25%K,

001 :
00015 100 ; 1000

FIG. 3. The derivative,. In M(t,7)|—o atK, for r =0.25. The top

curve is estimated fronrAK=0.5% of K, and the bottom from bac|:_|k to this pOInltdalt.Iihe end ?(f this section. T
AK=0.25% ofK.. The power law fit within the time interval ere we would like to make some more comments. To

[100,100Q is shown as the extended dotted line, while a fit to Eq.€Stimate the exponent, we have used the measured expo-
(17) on[10,100Q is denoted by circles. nentsz and 1z as input. We are relatively confident of the
measurement of since the critical point is exactly known

=128 and 0.791(8) fok =256. The agreement of these two &nd the scaling behavior d(t,L) is not affected by the
values confirms again that the finite size effect is negligiblylo9arithmic correction in Eq(5). The reasonable results for
small. The exponerd/z for r=0.5 andr =0.1 are estimated the exponenty confirm this. However, the mgasurement of
to be 0.8799), and0.6447), respectively. From these re- 1/vz from the slope onTIn M(t) qould theoretlc.ally be af-
sults we obtain the dynamic exponent 2.282), 2.533), fected by the Ioganthmp correction as sh?)/vzn- in ED.

and 3.113), respectively, forr=0.5, 0.25, and 0.1. It is _ 1N"€ power law behaviod, In M(t,7)| —o~t"* is deduced
clear that the dynamic exponentaries with the strength of from the scaling formM(t,7)=b"#"M(b%,b*"7). If
disorderr. Taking the dynamic exponemtas input we can there is a logarithmic correction faj(7), this scaling form
calculate the critical exponen from 5/2z measured from Wil be modified. Let us start from the following more gen-
M(t). Forr=0.5, 0.25, and 0.1, the exponents estimated €ral scaling form:

to be 0.2523), 0.2493), and0.2493), respectively. These

values are consistent with the theoretical value 0.25 of the M(t,7)=b"#"M(b~%,7'(7,b)), (13
pure Ising model. This universa} is also supported by all

reﬁi”;ig“”{evr\'lza'sé“eef‘hsé‘trf&ep;;g;geetg‘gt';gg“C”l]-rves Lpwargere 7' (7.b) should be determined by the relatiair)
aboveK. and downwards belowiK.. With these data, the =b"7£(7). According to Eq(1), we have
derivatived . In M(t) can be approximately calculated. In Fig. - -
3, the time evolution of this derivative for=0.25 calculated 7 M1+ Cin(L7)]"=b s [1+ClIn(1/7)]". (14
with AK=0.5%K_. and AK=0.25%K. is plotted on a

double-log scale(solid Iings). Both curves show similar By writing = as 7' = rbYf(r,b), we get

power law behavior. In a time intervfl 00,1000, we mea-
sure from the slopes the critical exponentZ+ 0.368(2) for

AK=0.5%K . and 0.366(5) fonK=0.25%K .. The agree- . ClIn(b™f) V/V~ ~ C In(b*) 1"
ment of these two values indicates thaK=0.5%K, is B 1+CIn(l/i7)] 1+Cin(l/7)|
small enough to estimate the derivativeln M(t). For the (15

TABLE I. Results for the exponents from simulations starting from both random initial states and an ordered initial state. The exponents
v and v, are obtained without and with the taking into account of the corrections to scaling il Bgrespectively. For the calculation of
z=(2—n)ly, the theoretical valugy)=0.25 is used as input. Data for=1 are taken from Ref.24].

Random start Ordered start
r 0 y N z=(2—n)ly z=d/(\+6) z 7 v Ve
1 0.1911) 0.81717) 0.73711) 2.142) 2.1553) 2.162) 0.2492) 0.972) 0.993)
0.5 0.1832) 0.7611) 0.691) 2.3003) 2.294) 2.282) 0.2523) 1.042) 1.063)
0.25 0.1612) 0.691) 0.621) 2.54(4) 2.56(4) 2.533) 0.2493) 1.072) 1.094)
0.1 0.12711) 0.561) 0.521) 3.125) 3.095) 3.113) 0.2493) 1.132) 1.153)
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where the approximation is based on a very smalFrom 0.1 .
above equations, we obtain

Vv

C |n(tl/1/Z)
1+CIn(17)

For a finite 7, there is a logarithmic correction that disap- »
pears at the exact critical temperature 0.
However, Eq.(16) does not yield a good fit to the data in I —

Fig. 3. Actually, according to Eq.16) the correction to the /
power law becomes prominent for largéout the curve in

Fig. 3 shows deviation from power law mainly in shorter
times. The deviation from a power law mainly in shorter

times is usually considered to be the effect of microscopic
detail. It can be also described as a kind of correction to

a. InM(t,7)~t*7 1—

(16) M(t)

scaling. To investigate this correction to scaling, we have0.03 o 100
fitted our results in the time intervall0,100Q with the fol- t
lowing ansatz: FIG. 4. Time evolution of the magnetization for different
strengths of randomnessat their critical temperatures plotted in
d,INM(t)=at*(1-bt™ ). (17)  double-log scale. From top to bottom, thés 0.5, 0.25, and 0.1,

respectively.
From Fig. 3 we see that the fit is rather good. The best-fitting

values ofa are 0.15, 0.20, and 0.22, respectively, for differ- the magnetization of the system undergoes an initial power
ent strengths of randomness-0.5, 0.25, and 0.1. The ex- law increase, described by the exponéntwe have mea-
ponent 14z is reduced about 2% and with a bigger error duesured this exponent for different strengths of randommess
to this four-parameter fitting. This means that the correction=0.5, 0.25, and 0.1. In the simulations, initial configurations
to the scaling could only increase our values of the exponerare prepared simply by setting the spin to be 1-at on

v. Actually, weare happy with this 2% correction since then each lattice site randomly with the probability tIny)/2

the exponents for r=1 comes very close to 1, and it ex- and (1—mg)/2, respectively. After generating an initial con-
plains the systematic error for mentioned before, even figuration, the system is then updated with the Metropolis
though statistical errors become bigger. In Table I, the valueglgorithm up to 200 Monte Carlo steps. The lattice size is
for the exponent after taking into account the corrections to L=128 and the initial magnetization ia,=0.02. For each
scaling are given ag.. With these discussions we should r, the average is over 300 realizations of the distribution of
state that our results favor the weak universality scenari¢ouplings, and for each realization the simulation is carried
with an r-dependent exponent out for 500 independent initial configurations.

In Fig. 4 the time evolutions of the magnetization for
different strengths of randomnesst their critical tempera-
tures are plotted on double-log scale. The magnetization in-

For the dynamic process starting from a high temperatureleed increases. If we measure the slopes of the curves in a
state, our numerical data show that there are rather strorigme interval [10,20Q the critical exponenty for r=0.5,
dynamic corrections to scaling, as in the 20¥ model 0.25, and 0.1 are 0.183), 0.1612), and0.12741), respec-
[30,31). It is interesting that if we perform the measurementstively. The results are smaller than that of the 2D Ising model
in a time interval, e.g.[100,200Q, all data result consis- 6#=0.191(3)[36] and are apparently dependent.
tently in a roughly correcty, but the dynamic exponeumtis The exponend is actually defined in the limitng—0. In
around 5-10% bigger than that obtained from a dynami®order to make sure that in our simulations the initial magne-
process starting from an ordered initial state discussed in thiizationmg is small enough, we have performed a simulation
last section. The corrections to scaling seem not to changeith my=0.01 for r=0.25. The measured value @ is
the static exponents and the scaling relations between ti®162(4) and in good agreement with=0.161(2) with
exponents. It is very important to clarify these corrections tomy=0.02. In our measurements, the errors induced by the
scaling and how they look like. finite initial magnetizatiorm, can be ignored.

We start from the measurements of the exporteridere Now let us turn to dynamic evolution from a random ini-
we will not consider the corrections to scaling. It is not thattial state withmy=0. In this dynamic process, the autocor-
we are sure there are no corrections to scaling but it is togelationA(t) and the second momekt(?)(t) are expected to
difficult to perform simulations to longer times. We need have power law behavior as described in E&s.and (6).
very small initial magnetizatiom, and large lattices. Fortu- Some preliminary results show that in this evolution, the
nately, the value of the exponefiis relatively small and the dynamic scaling behavior of the autocorrelatidft) and the
correction of it will not affect so much other exponents in second momenM(?)(t) suffer from severe corrections to
our data analysis. As indicated in Ep), starting from a  scaling, which increase for smallerIn order to investigate
high temperature state with a small initial magnetizatigyy  clearly the corrections to scaling, we perform these simula-

IV. QUENCHED FROM A HIGH TEMPERATURE STATE
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FIG. 5. Time evolution of the autocorrelatigx(t) and the sec-
ond momentM® for r=0.1 atK plotted in double-log scale. The
extended dashed lines show the power law fits within the time in
terval [500,10000, while the fits to Egs.(18) and (19) on
[10,10 00Q are denoted by circles.

tions up to 10 000 Monte Carlo steps. To avoid the finite siz
effect the lattice sizes are set to be=512, 512, and 256,
respectively, for the three different strengths of randomnes

r=0.5, 0.25, and 0.1. Such different choices are based on th

fact that the dynamic exponemnincreases for smaller, and
for r=0.1 there is already no finite size effect with-256
until 20000 Monte Carlo steps. The averages are over 50
realizations of the distribution of couplings. For each realiza
tion, the simulation is carried out with 10 and 50 independen
initial configurations fol. =512 andL =256, respectively.

In Fig. 5, the time evolution of the autocorrelatiéx{t)
and the second momeht(®)(t) for r=0.1 atK are plotted
as solid lines on double-log scale. Since the corrections t
scaling are severe, we perform a power law fit in a tim
interval [500,10 000. The results are shown with dashed
lines. With these power law fits, the exponents-(2
—mn)/z and N are measured to be 0.566(3) and 0&)3
respectively for =0.1. To investigate the effect of the cor-
rection to scaling systematically, we fit the autocorrelation
A(t) in the time interval 10,10 00Q with the following an-
satz:

A(t)=at MN1—bt™©), (18
and similarly fit the second momen ?)(t) with
M®@(t)=at’(1—bt™°). (19

The best-fitting values of are about 0.2 and 0.4, respec-
tively, for A(t) andM(?)(t). The resulting exponenig= (2
—n)/z and\ are 0.56(1) and 0.52). Compared with those
obtained from the power law fits starting frotg;.=500, a
different value forn shows that the correction to scaling is
strong andt,;c=500 cannot remove all its effect. We have

also tried the ansatz with logarithmic corrections proposed

e

FIG. 6. The scaling functiog(x/t*%) =x7C(x,t) for r=0.25.

for the 2DXY model in Ref[31]. The fits seem also not bad,

and the quality is similar to that for the fits with Eq4.8)
and(19), but the resulting exponents are not reasonable. For
r=0.1, for example, we obtaip=0.62(1) from the second

€moment and\ = 0.55(1) from the autocorrelation. These val-

ues are too high compared $0=0.56(1) and\=0.52(1)
ftom the fits with Eqs(18) and (19).

€ with the exponeny=(2— »)/z in hand, we can estimate
the dynamic exponenz by using the theoretical value
=0.25 as an input. The latter has been verified by the simu-
Rtions from an ordered initial state. On the other hand, we
can also calculate the dynamic exponeritom the relation
E=d/()\+ 0) by using the exponent8 and\ as input. For
r=0.1, with X\ andy measured by fitting to Eq418) and
(19), we getz=3.09(5) and 3.1¢5). The twovalues agree
well with each other and are consistent witk-3.11(3)
fheasured in the simulation starting from an ordered initial

state. Here we should mention that the correctior® ofill
not change the estimate of the dynamic expomzesd much,
since # is much smaller than.

For the other two strengths of randomness0.5 and
0.25, the exponent=(2— 7n)/z are measured to be 0.76(1)
and 0.691), respectively, by fitting to Eq(19), while the
exponent\ is 0.69(1) and 0.62(1) by fitting to E¢18).

All the exponents calculated from our measurements are
listed in Table I. The exponents of the pure Ising model (
=1) measured with short-time dynamic simulations are also
given in Table | for comparisolsee the review papgf4]
and references therginWe can see that the dynamic expo-
nents calculated from the slope of the second monzent
=(2—n)ly and fromz=d/(\+ 6) are in good agreement
with the value measured from ordered start for all different
strengths of randomness

To confirm the short-time dynamic scaling, we have also
measured the equal-time correlation funct®fx,t) in these
simulations. TheC(x,t) should be subject to the following
dynamic scaling:

C(x,t)=x""g(x/t*?). (20)

036123-6
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Based on this equation we can extract the exporeatsl »
independently from the correlation functio@(x,t) by
searching for the best scaling collapse.
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V. CONCLUSIONS

We have systematically investigated the short-time critical
dynamic behavior of the two-dimensional random-bond

As discussed above, the correction to scaling gets strongeging model with Monte Carlo methods. The simulations are

for smallerr. Therefore, in performing the scaling collapse,
we must set proper,;.- In case of the second momety,.
should be about 500, 200, and 100 fet 0.1, 0.25, and 0.5,
respectively. For the scaling collapse ©fx,t), t,,. can be

carried out for different strengths of randomness and for dif-
ferent initial conditions. Scaling behavior has been examined
and corrections to scaling are seriously considered. The ex-
ponentsfd andz are found to be the strength of randomness

slightly smaller. For example, in Fig. 6 we present the scaldependent. The exponentis very consistent with the Ising

ing function g(x/t¥?)=x7C(x,t) for r=0.25. By searching
for the best scaling collapse in a time intery&0,10 00Q,
we getn=0.250(1) andz=2.532). These results are very
reasonable. Forr=0.5, we get »=0.250(1) and z
=2.28(1) with t,;=40, and for r=0.1 we get 7
=0.250(2) andz=3.11(1) witht,;.=320. All these results

value »=0.25, but the exponent is slightly bigger than 1
and is dependent on the strength of randomness.
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